CBCS SCHEME

15EC36

Third Semester B.E. Degree Examination, June/July 2023 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in vector form.

(04 Marks)

- b. Point charges of 60 nano colombs each are located at A(2, 0, 0), B(-2, 0, 0), C(0, 2, 0) and D(0, -2, 0) in free space. Find the total force on the change at 'A'. (08 Marks)
- c. Define electric field intensity and electric flux density and also establish the relationship between them. (04 Marks)

OR

2 a. Derive an expression for electric field intensity due to infinite line charge distribution.

(08 Marks)

- b. Find the electric field at the origin, if the following charge distributions are present in free space:
 - i) Point charge 15nc at P(1, 2, 3).
 - ii) Uniform line charge of $\rho_L = 3$ nc/m at x = 2, y = 3
 - iii) Uniform surface charge of $\rho_S = 0.2 \text{nc/m}^2$ at x = 2

(08 Marks)

Module-2

3 a. State and prove Gauss law for point charge.

(05 Marks)

b. Find the volume charge density at the point indicated.

$$\vec{D} = 4\rho z \sin \phi \hat{a}_{\rho} + 2\rho z \cos \phi \hat{a}_{\phi} + 2\rho^2 \sin \phi \hat{a}_{z} \quad c/m^2 \text{ at } p\left(1, \frac{\pi}{2}, 2\right)$$

(06 Marks)

c. State and prove Gauss Divergence theorem.

(05 Marks)

OR

- 4 a. Derive the expression for energy expended in moving a point charge in an uniform electric field in arbitrary direction. (05 Marks)
 - b. Let $V = \frac{\cos 2\phi}{r}$ in free space in cylindrical system. Find \vec{E} at P(2, 30°, 1).

(06 Marks)

c. Derive point form of continuity equation of current.

(05 Marks)

Module-3

- 5 a. With the usual notations, deduce the poisons and Laplace equation from the Maxwell's for equation. (04 Marks)
 - b. Determine whether the following equations satisfy the Laplace equation or not.
 - i) $V = 2x^2 4y^2 + z^2$

ii) $V = r^2 \cos \phi + \theta$

(06 Marks)

c. State and prove uniqueness theorem.

(06 Marks)

OR

State and explain Biot-Savart's law.

(04 Marks)

- Solve Laplace's equation to determine the capacitance of a coaxial cable when the inner (08 Marks) radius is 'a' and outer radius is 'b' respectively.
- An air cored toroid having a cross sectional area of 6cm² and mean radius 15cm is wound uniformly with 500 turns carrying a current of 4A. Determine the magnetic flux density.

(04 Marks)

Module-4

Derive Lorentz force equation.

(06 Marks)

- A conductor 4m long lies along y axis with a current of 10A in the \vec{a}_v direction. Find the force on the conductor if the field in the region is $\vec{B} = 0.008$ \vec{a}_x Tesla. (04 Marks)
- Discuss the magnetic field boundary conditions using Maxwell's equations. (06 Marks)

OR

- Derive an expression for the force on a differential current element placed in a magnetic 8 (06 Marks) field.
 - (04 Marks) Define: i) Magnetization ii) Permeability.
 - Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of length 60cm and of diameter 6cm, given that medium is air. Derive the expression used.

Module-5

- Explain displacement current density and conduction current density and write Maxwell's (06 Marks) equation related to both.
 - Find the frequency at which conduction current density and displacement current density are equal in a medium with $\alpha = 2 \times 10^{-4}$ T/m and $\epsilon_r = 81$. (04 Marks)
 - c. State and prove poynting theorem.

(06 Marks)

- List Maxwell's equations in differential and integral form for both static and time varying 10
 - Derive the expression of α , β , γ and v_p for uniform plane wave in a good conductor.

(06 Marks)

The depth of penetration in a certain conducting medium is 0.1m and the frequency of the electromagnetic wave is 1.0MHz. Find the conductivity of the conducting medium.

(04 Marks)